Sobolev seminorm of quadratic functions with applications to derivative-free optimization

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sobolev seminorm of quadratic functions with applications to derivative-free optimization

This paper studies the H1 Sobolev seminorm of quadratic functions. The research is motivated by the least-norm interpolation that is widely used in derivative-free optimization. We express the H1 seminorm of a quadratic function explicitly in terms of the Hessian and the gradient when the underlying domain is a ball. The seminorm gives new insights into least-norm interpolation. It clarifies th...

متن کامل

Applications of quadratic D-forms to generalized quadratic forms

In this paper, we study generalized quadratic forms over a division algebra with involution of the first kind in characteristic two. For this, we associate to every generalized quadratic from a quadratic form on its underlying vector space. It is shown that this form determines the isotropy behavior and the isometry class of generalized quadratic forms.

متن کامل

Maximal elements of sub-topical functions with applications to global optimization

We study the support sets of sub-topical functions‎ ‎and investigate their maximal elements in order to establish a necessary and sufficient condition‎ ‎for the global minimum of the difference of two sub-topical functions‎.

متن کامل

Randomized Derivative-Free Optimization of Noisy Convex Functions∗

We propose STARS, a randomized derivative-free algorithm for unconstrained optimization when the function evaluations are contaminated with random noise. STARS takes dynamic, noise-adjusted smoothing stepsizes that minimize the least-squares error between the true directional derivative of a noisy function and its finite difference approximation. We provide a convergence rate analysis of STARS ...

متن کامل

A Semidefinite Optimization Approach to Quadratic Fractional Optimization with a Strictly Convex Quadratic Constraint

In this paper we consider a fractional optimization problem that minimizes the ratio of two quadratic functions subject to a strictly convex quadratic constraint. First using the extension of Charnes-Cooper transformation, an equivalent homogenized quadratic reformulation of the problem is given. Then we show that under certain assumptions, it can be solved to global optimality using semidefini...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematical Programming

سال: 2013

ISSN: 0025-5610,1436-4646

DOI: 10.1007/s10107-013-0679-3